

GEOMETRIA DE VIAS

Elementos geométricos de uma estrada (Fonte: PONTES FILHO, 1998)

1. INTRODUÇÃO:

- Após traçados o perfil longitudinal e transversal, já se dispõe de dados necessários para uma verificação da viabilidade da locação do greide de cada traçado através dos cálculos de movimento de terra.
- No cálculo de volumes é necessário conhecer-se a largura (*L*) da plataforma do greide de regularização (pista de terraplanagem) e as inclinações dos taludes. A inclinação dos taludes de corte e aterro varia conforme o tipo de solo encontrado.
- O principal objetivo do projetista de estradas é o de efetuar o menor movimento de terra possível, cumprindo, logicamente, as normas de um traçado racional.

- O perfil longitudinal (greide) gera, portanto, volumes a escavar (cortes) e volumes a aterrar (aterros). No projeto do greide procura-se um perfil longitudinal que proporcione boas compensações entre cortes e aterros, e também distâncias de transportes tão reduzidas quanto possível.
- O custo do movimento de terra é, na maioria dos projetos, significativo em relação ao custo total da estrada, sendo, portanto um item importante a ser analisado. Nos locais onde os materiais de corte tiverem condições de serem usados nos aterros, o equilíbrio entre volumes de cortes e aterros, minimizando empréstimos e/ou bota-foras, acarreta em menores custos de terraplanagem.

2. CÁLCULO DOS VOLUMES:

• O método usual consiste em considerar o volume como proveniente de uma série de prismóides (sólidos geométricos limitados nos extremos por faces paralelas e lateralmente por superfícies planas). No campo, (FIGURA 6.1) as faces paralelas correspondem às seções transversais externas, e as superfícies planas laterais correspondem à plataforma da estrada, os taludes e a superfície do terreno natural.

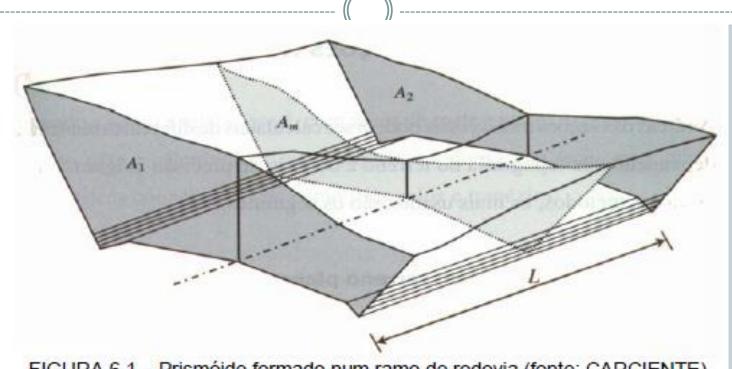


FIGURA 6.1 – Prismóide formado num ramo de rodovia (fonte: CARCIENTE)

Uma fórmula aproximada comumente utilizada para o cálculo dos volumes dos prismóides é a chamada fórmula das áreas médias :

$$V_m = \frac{L}{2} (A_1 + A_2)$$

• ÁREA DAS SEÇÕES TRANSVERSAIS:

- As áreas das secções transversais podem ser calculadas de diferentes maneiras, dependendo da topografia do terreno e do grau de precisão exigido.
- Entre os vários métodos, os mais usados são o seguinte:
- <u>Método analítico para o cálculo da área das seções:</u> cálculo pelas coordenadas de seus vértices;
- **Planímetros:** são instrumentos que servem para medir a área de uma figura;
- <u>Seção mista:</u> quando a seção é mista, isto é, com áreas de corte e aterro, o processo mais prático para o cálculo das áreas baseia-se na divisão de seção em figuras geométricas conhecidas, tais como triângulos e trapézios.
- <u>Processo Simplificado:</u> admite o terreno natural em nível. É um método usado apenas para estimativa dos volumes, portanto, apenas nos anteprojetos.

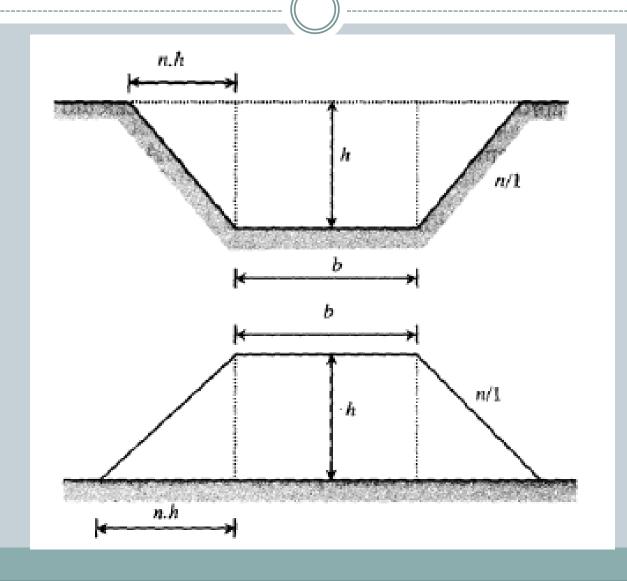
3. PROCESSO SIMPLIFICADO:

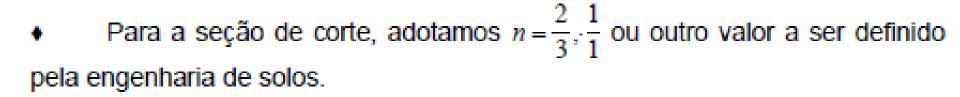
• Embora o processo simplificado leve a erros por admitir o terreno em nível, é um processo usado pois nos permite avaliar com rapidez os volumes de terraplanagem.

$$A = b.h + 2.\frac{nh.h}{2} = h(b + nh)$$

• Desenvolvendo, temos:

$$A = b.h + n.h^2$$


Onde:


A = Área da seção transversal.

b = Base

h = Altura.

n = Talude (n/1).

No trabalho adotaremos, para corte,
$$n = \frac{2}{3}$$
.

• Para a seção de aterro, adotamos $n = \frac{3}{2}$ ou outro valor a ser definido pela engenharia de solos.

4. NOTA DE TERRAPLANAGEM:

1º Exemplo:

Ponto	Estacas	Cota	s (m)	(f)	GP	Cotas vern	nelhas (h)
		Terreno	G. reto			Corte (+)	Aterro (-)
PCV	74	820,0	827,60	0,00	827,60		7,60
	75	821,10	828,00	0,07	827,93		6,83
	76	822,00	828,40	0,27	828,13		6,13
	77	823,00	828,80	0,60	828,20		5,20
	78	824,00	829,29	1,07	828,13		4,13
	79	825,12	829,60	1,67	827,93		2,81
PIV	80	826,40	830,00	2,40	827,60		1,2
	81	827,80	828,80	1,67	827,13	0,67	
	82	828,20	827,60	1,07	826,54	1,66	
	83	828,90	826,40	0,60	825,80	3,10	
	84	829,15	825,20	0,27	824,94	4,21	
	85	830,30	824,00	0,07	823,94	6,36	
PTV	86	830,50	822,80	0,00	822,80	7,70	

2º Exemplo:

(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8)	
ESTACA	DECLIVIDADE		COTAS		NOTAS DE	NOTAS DE SERVIÇO		ÁREAS	
			TERRENO	GREIDE	ATERRO	CORTE	ATERRO	CORTE	
1			728,50	725,10		3,40		58,7	
2	↓	+1%	729,65	725,30		4,35		77,9	
3			730,81	725,50		5,31		98,4	
4			728,70	725,60		3,10		52,9	
5	CURVA	VERTICAL	727,55	725,55		2,00		32,7	
6			722,75	725,45	2,70		51,4		
7			722,05	725,25	3,20		63,4		
8			720,75	725,05	4,30		92,2		
9	↓	-1%	718,85	724,85	6,00		144,0		
10			717,50	724,65	7,15		183,9		
11			716,88	724,45	7,57		113,6		
12]		715,65	724,25	8,60		239,9		
13			714,95	724,05	9,10		260,7		
14			713,10	723,85	10,75		334,6		

- → Coluna das estacas
- (2) → Declividades do greide.
- (3) → Coluna das cotas do terreno (obtidas do levantamento topográfico "in loco").
- (4) → Coluna das cotas do greide (obtidas do anteprojeto).
- (5) → Coluna (3) Coluna (4), se negativo.
- (6) → Coluna (3) Coluna (4), se positivo.
- (7) → Cálculo da área de aterro: A = 15,00 × h + 1,5 × h², adotando B=15,00 m.
- (8) \rightarrow Cálculo da área de corte: $A = 15,00 \times h + \frac{2}{3} \times h^2$, adotando B=15,00 m.

- A caderneta que nos fornece as notas de serviço, isto é, a indicação de quanto devemos escavar ou aterrar em cada estaca.
- As cotas do terreno são obtidas da caderneta de nivelamento.
- As cotas do greide são obtidas do projeto, através de cálculo analítico.
- Após o cálculo das alturas de corte e aterro, utilizando as fórmulas simplificadas apresentadas pelo processo simplificado obtemos as áreas das seções que serão utilizadas para o cálculo dos volumes de corte ou aterro.

5. CÁLCULO DOS VOLUMES PROPRIAMENTE DITO:

• Os volumes são calculados associando-se a um prisma, o volume entre duas seções consecutivas. Esse volume chama-se **VOLUME DO INTERPERFIL** (*Vi*).

$$V\bar{i} = \frac{1}{2}d(A_{i-1} + A_i)$$
 onde:
 $d \rightarrow \text{distância entre seções (m).}$
 $A \rightarrow \text{Áreas das seções (m}^2).$

• Após o cálculo dos volumes parciais (Vi), obtém-se o volume total através da somatória dos volumes parciais.

5. DISTRIBUIÇÃO DO MATERIAL ESCAVADO:

• Após a conclusão do projeto em planta e perfil, que deve ter sido elaborado de modo a ter-se o mínimo possível de movimento de terra, passamos então ao estudo da distribuição mais conveniente dos volumes escavados.

PRINCÍPIOS DO DIAGRAMA DE MASSAS:

- Uma forma de bem assimilar o funcionamento do diagrama antes de aplicálo, é através de princípios que o regem.
- a) Primeiro princípio (da construção do diagrama):
- A linha do diagrama sobe nos trechos de corte e desce nos aterros; portanto passa por máximos relativos na passagem de corte para aterro e por mínimos relativos na passagem de aterro para corte.
- Tanto os máximos como os mínimos são relativos e não há necessidade de termos os absolutos, porque os transportes serão feitos em trechos curtos.

- b) Segundo princípio (da linha de distribuição):
- Quando traçamos um alinha paralela à linha de construção cortando a linha do diagrama, ficam determinados volumes iguais de corte e de aterro. Esta linha chama-se linha de distribuição.
- c) Terceiro princípio (dos empréstimos e bota-foras):
- Quando duas linhas de distribuição sucessivas fazem um degrau para baixo, temos a necessidade de um "empréstimo"; quando o degrau é para cima temos um "bota-fora".
- "Empréstimos" acontece quando falta terra e temos necessidade de tirá-la das partes laterais para a plataforma.
- "bota-fora" é quando sobra terra na plataforma e necessitamos jogá-la nas laterais.

d) Quarto princípio:

• Quando a linha do diagrama está acima da linha de distribuição, o transporte da terra é para frente; quando está abaixo da linha de distribuição, o transporte da terra é para trás.

e) Quinto princípio:

• Em cada ponto do diagrama, a leitura da vertical (ordenada) nos fornece o valor dos volumes acumulados até esse ponto.

f) Sexto princípio:

• A área limitada pelo diagrama e a horizontal qualquer dá o momento de transporte entre o corte e o aterro que se compensam.

• EXECUÇÃO DO DIAGRAMA DE MASSAS OU DE BRUCKNER:

- O diagrama de massas também é conhecido como diagrama de Bruckner, seu criador. É utilizado para planejar o transporte de terra entre cortes e aterros, bom como calcular suas quantidades para efeito de valores, objetivando o estudo da distribuição de terras de modo a ter-se o transporte mais econômico.
- Desenhando o perfil (terreno e greide), calculam-se os volumes de corte (C1, C2,...Cn) e aterros (A1, A2, ...An), considerando que os aterros ao serem compactados aumentam de volume.
- Para possibilitar a comparação entre volumes de corte e aterro, é necessário o uso de um fator de conversão de volumes. Dá-se o nome de fator de homogeinização (Fh) à relação entre o volume de material no corte de origem, e o volume de aterro compactado resultante.
- O coeficiente de acréscimo de volume dos aterros é calculado como:

$$F_h = \frac{\delta_s}{\delta_c} \cong 1{,}30 \rightarrow \text{(fator de compactação)}.$$

onde:

 δ_s = massa específica aparente seca após compactação no aterro.

 δ_c = massa específica aparente seca do material no corte de origem.

• O fator de homogeneização é aplicado sobre os volumes de aterro, como um multiplicador.

(1)	(2)	(3)	(4)	(5)	(6)		(7)	(8)	(9)	(10)
	_		QUADRO P	ARA CAL	CULO DA	TERR	APLANAGE	М		
					SEMI	VOLUMES				COMPEN
EST.	ÁREAS (m2)		SOMA DAS ÁREAS		DISTÂ <u>n</u>		PARCIAI		ACUMU-	SAÇÃO
	ATERRO	CORTE	ATERRO	CORTE	CIA	A	TERRO	CORTE	LADOS	LATERAL
1		58,7		0	10	X1,3=		0	0	
2		77,9		136,6	10	X1,3=		1366,0	1366,0	
3		98,4		176,3	10	X1,3=		1763,0	3129,0	
4		52,9		151,3	10	X1,3-		1513,0	4642,0	
5		32,7		85,6	10	X1,3-		856,0	5498,0	
5+10	0	0		32,7	5	X1,3-		163,5	5661,5	
								5661,5		
6	51,4		51,4		5	X1,3=	-334,1		5327,4	
7	63,4		144,8		10	X1,3=	-1882,4		3445,0	
8	92,2		155,6		10	X1,3-	-2022,8		1422,2	
9	144,0		236,2		10	X1,3-	-3070,6		-1648,4	
10	183,9		327,9		10	X1,3-	-4262,7		-5911,1	
11	113,6		297,5		10	X1,3-	-3867,5		-9778,6	
12	239,9		353,5		10	X1,3-	-4595,5		-14374,1	
13	260,7		500,6		10	X1,3-	-6507,8		-20881,9	
14	334,6		595,3		10	X1,3=	-7738,9		-28620,8	
14+8	0	0	334,6		4	X1,3=	-1739,9		-30360,7	
							-36022,2			

- (1) → ESTACAS
- (2) → ÁREAS DE ATERRO.
- (3) → ÁREAS DE CORTE.
- (4) → SOMATÓRIA DAS ÁREAS DE ATERRO ENTRE DUAS SEÇÕES CONSECUTIVAS.

Por exemplo: 58,7 + 77,9 = 136,6.

77,9 + 98,4 = 176,3.

(5) → SOMATÓRIA DAS ÁREAS DE CORTE ENTRE DUAS SEÇÕES CONSECUTIVAS.

Por exemplo: 0,0 + 51,4 = 51,4.

51,4 + 63,4 = 144,8. 63,4 + 92,2 = 155,6.

- (6) → SEMI DISTÂNCIA ENTRE DUAS SEÇÕES CONSECUTIVAS.
- (7) → CÁLCULO DO VOLUME DE ATERRO: (4) X (6) X 1,3.
- (8) → CÁLCULO DO VOLUME DE CORTE: (5) X (6) X 1,0.
- (9) → CÁLCULO DO VOLUME ACUMULADO PARA A CONSTRUÇÃO DO DIAGRAMA DE MASSAS.
- (10) → DISTRIBUIÇÃO DOS VOLUMES LATERAIS.

- Com os volumes acumulados construí-se o DIAGRAMA DE BRUCKNER, sobre o mesmo perfil da prancha de projeto, escolhendo-se uma horizontal de referência e sobre ele marcando-se os volumes acumulados (vertical) relacionados às estacas.
- A escala vertical do diagrama usada geralmente é 1 : 1.000 m³ (1cm = 1.000m³)
- Para levar a terra do corte para o aterro, algumas viagens são curtas e outras longas. Precisamos procurar a distância média, obtido pelo diagrama de massas. Multiplicando o volume de corte pela distância média de transporte obtemos o momento de transporte.
- Portanto:

$$\mathbf{M}_{t} = \sum_{i}^{n} Vi \times d_{i}$$

Onde: $M_t = \text{Momento de transporte } (m^3 \cdot dam).$ Vi = Volume de corte parcial.

= Distância média parcial.

Após a determinação do volume total, podemos calcular a distância média do transporte no trecho analisado, portanto:

onde:
$$d_m$$
 = Distância média total.

= Volume de corte total.

$$d_m = \frac{\mathbf{M}_t}{V_c}$$

EXERCÍCIOS

	QUADRO PARA CALCULO DA TERRAPLANAGEM											
	ESTACA	ÁRE.		SOMA DAS ÁREAS		SEMI DISTÂN	PARC	VOLUMES	ACUMU-	SACÃO		
	ESTACA	ATERRO			CORTE	CIA	ATERRO	CORTE	LADOS	LATERAL		
ı	0	0	0	0	CONTE	CIA	0	CONTE	0	LATERAL		
ı	1	15	U	15		10	-150		-150			
ı	2	25		40		10	-400		-550			
	3	40		65		10	-650		-1200			
ı	4	50		90		10	-900		-2100			
	5	20		70		10	-700		-2800			
	5+10	0	0	20		5	-100		-2900			
ı							-2900					
	5+10	0	0		0	-			-2900			
	6		10		10	5		50	-2850			
	7		30		40	10		400	-2450			
	8		50		80	10		800	-1650			
	9		45		95	10		950	-700			
	10		25		70	10		700	0			
	11		15		40	10		400	400			
	11+8	0	0		15	4		60	460			
								3360				
ı	11+8	0	0	0		-			460			
	12	10		10		6	-60		400			
	13	25		35		10	-350		50			
	14	15		40		10	-400		-350			
	15	5		20		10	-200		-550			
	15+16	0	0	5		8	-40		-590			
							-1050					
	15+16	0	0		0	-			-590			
	16		5		5	2		10	-580			
	17		15		20	10		200	-380			
	18		20		35	10		350	-30			
	19		10		30	10		300	270			
	20		0		10	10		100	370			
	TOTALO						2050	960				
	TOTAIS						-3950	4320				

TRABALHO

- 1. Calcular o Momento de Transporte e o custo do serviço de terraplanagem para o trecho abaixo, sabendo-se que:
- Distância do bota fora = 0,3Km;
- Custo de escavação = R\$ 1,50/m³
- Custo de transporte = R\$ 0,75/m³.Km
- Custo da compactação = R\$ 0,65/m³
- Largura da plataforma = 14,00 m
- Taludes = 1:1
- Coeficiente de redução = 1,2

DATA ENTREGA: DIA DA 1^a PROVA.

TRABALHO

"))

ESTACA	C	OTAS PELO	EIXO	"OFF-SETS	"(COTAS)	ÁREA DA	A SEÇÃO
	GREIDE	TERENO	VERMELHA	ESQUERDA	DIREITA	CORTE	ATERRO
0	640,150	640,150	0,000	640,150	640,150	0,00	0,00
1	640,700	641,300	0,600	641,910	640,880	9,48	0,00
2	641,150	642,290	1,140	642,980	641,470	16,73	0,00
3	641,500	645,060	3,560	646,500	644,000	64,52	0,00
4	641,750	647,360	5,610	647,600	647,080	109,76	0,00
5	641,900	647,120	5,220	646,720	647,200	98,37	0,00
6	641,950	645,850	3,900	644,920	646,340	67,42	0,00
7	641,900	643,900	2,000	642,360	645,150	30,70	0,00
8	641,750	640,810	-0,940	638,110	644,720	7,90	18,53
9	641,550	637,330	-4,220	636,270	638,400	0,00	76,83
10	641,450	632,000	-9,450	632,000	632,000	0,00	221,60
11	641,550	637,950	-3,600	635,460	638,240	0,00	75,02
12	641,850	642,420	0,570	641,000	644,120	11,39	1,78
13	642,250	645,610	3,360	645,060	646,330	59,14	0,00
14	642,650	646,520	3,870	646,580	646,500	69,37	0,00
15	643,050	644,700	1,650	644,700	644,700	25,82	0,00
16	643,450	643,450	0,000	643,450	643,450	0,00	0,00

TRABALHO

ESTACA	VOLU	JMES	ATERRO	VOLUME	VOLUME	ACUMULADO	DIAGRAMA			
	CORTE	ATERRO	CORRIGIDO	EXCEDENTE	CORTE	ATERRO	DE MASSAS			
0	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
1	94,80	0,00	0,00	94,80	94,80	0,00	94,80			
2	262,10	0,00	0,00	262,10	356,90	0,00	356,90			
3	812,50	0,00	0,00	812,50	1169,40	0,00	1169,40			
4	1742,80	0,00	0,00	1742,80	2912,20	0,00	2912,20			
5	2081,30	0,00	0,00	2081,30	4993,50	0,00	4993,50			
6	1657,90	0,00	0,00	1657,90	6651,40	0,00	6651,40			
7	981,20	0,00	0,00	981,20	7632,60	0,00	7632,60			
8	386,00	185,30	222,36	163,64	8018,60	222,36	7796,24			
9	79,00	953,60	1144,32	-1065,32	8097,60	1366,68	6730,92			
10	0,00	2984,30	3581,16	-3581,16	8097,60	4947,84	3149,76			
11	0,00	2966,20	3559,44	-3559,44	8097,60	8507,28	-409,68			
12	113,90	768,00	921,60	-807,70	8211,50	9428,88	-1217,38			
13	705,30	17,80	21,36	683,94	8916,80	9450,24	-533,44			
14	1285,10	0,00	0,00	1285,10	10201,90	9450,24	751,66			
15	951,90	0,00	0,00	951,90	11153,80	9450,24	1703,56			
16	258,20	0,00	0,00	258,20	11412,00	9450,24	1961,76			